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We present a legislative bargaining model of the provision of a durable public good over an
infinite horizon. In each period, there is a societal endowment that can either be invested in the
public good or consumed. We characterize the optimal public policy, defined by the time path

of investment and consumption. In a legislature representatives of each of n districts bargain over the
current period’s endowment for investment in the public good and transfers to each district. We analyze
the Markov perfect equilibrium under different voting q-rules where q is the number of yes votes required
for passage. We show that the efficiency of the public policy is increasing in q because higher q leads to
higher investment in the public good and less pork. We examine the theoretical equilibrium predictions by
conducting a laboratory experiment with five-person committees that compares three alternative voting
rules: unanimity (q = 5), majority (q = 3), and dictatorship (q = 1).

Acentral role of government is the provision
of public goods to its citizenry. Most public
goods provided by governments are durable,

and hence dynamic in nature. It takes time to accu-
mulate them, and they depreciate slowly, projecting
benefits for many years. Prominent examples are na-
tional defense, environmental protection, and public
infrastructure. Although a large literature has studied
public good provision and public policy formation by
governments or legislatures in static models, both theo-
retically and empirically, much less is known about the
dynamics of public investments. Two political economy
questions immediately come to mind. First, can we
say anything about the efficiency of dynamic public
investment by legislatures or governing bodies oper-
ating under democratic rules? Second, to what extent
does the efficiency depend on the specific voting rules
under which these governing bodies operate? Again,
little is known about these effects, except for highly
specialized static environments, where only a single
decision is taken (for example, Baron and Ferejohn
1989, Volden and Wiseman 2005).
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The debate on the policy consequences of differ-
ent voting rules has important practical implications,
because we observe a large variety of voting rules in
the real world. In a parliamentary assembly, motions
on the floor are usually passed by a simple majority.
However, a broader consent is required in many other
contexts, and examples are widespread across differ-
ent systems of government. In the European Union’s
Council of Ministers, some proposals require only a
simple majority, some a supermajority, and some unan-
imous consent. As of the writing of this article, ex-
plicit supermajorities are required in most countries to
pass constitutional reform, and 16 U.S. states (Arizona,
Arkansas, California, Colorado, Delaware, Florida,
Kentucky, Louisiana, Michigan, Mississippi, Missouri,
Nevada, Oklahoma, Oregon, South Dakota, Washing-
ton) require a two-thirds supermajority legislative vote
to increase taxes. There is a large literature study-
ing the comparative performance of different voting
rules going back to Rousseau ([1762] 1988), Condorcet
(1785), Wicksell ([1896] 1967), Buchanan and Tullock
(1962), and more recently Austen-Smith and Banks
(1996) and Cox (1987). In contrast to our approach,
those works focus on static settings and typically deal
with purely distributive politics or reforms with un-
known winners, rather than with investment in a public
project.

In this article, we make a first attempt to answer
the questions mentioned earlier by proposing a new
theoretical framework for studying the political econ-
omy of dynamic public good provision. We analyze a
legislative bargaining model under alternative voting
rules and examine its predictions in a laboratory ex-
periment. The basic environment we study consists of
many citizens who live in n equal-sized districts and
can invest resources over time to accumulate a stock
of durable public good (roads, bridges, sewers, etc.).
An investment policy is taken each period by a central
governing body, the legislature, composed of a single
representative from each district, and operating under
a procedure consisting of an agenda-setting stage and
a voting rule. In each period, the legislature has the
power to allocate a fixed budget of resources between
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investment in the public good (whose utility is enjoyed
by all citizens of all districts) and targeted transfers to
each district.1 Representatives bargain in the legisla-
ture over the budget allocation. We characterize the
trajectory of public policies that would result from a
symmetric Markov perfect equilibrium for any q rule
adopted by the legislature, where a q rule requires q out
of n yes votes for passage of the policy for the current
period. We compare these equilibrium trajectories with
the optimal public policy (i.e., the policy that maximizes
the welfare of the citizens).

The equilibrium generates clear predictions about
how the dynamics of investment are affected by the
voting rule the legislature uses to make its decisions.
The model implies that a stricter requirement for pas-
sage (i.e., higher q) will generate a higher level of in-
vestment and a higher steady state of the public good.
The intuition for this is twofold: (1) a higher q forces
proposers to internalize a larger share of the public
good, and (2) stricter requirements for passage also
mitigate worries about future proposers’ incentives to
plunder the current public good investments. The for-
mer effect is similar to the familiar static free rider
problem, whereas the latter effect is entirely dynamic
and relates, for example, to models in which politi-
cians on the way out of power may run up debt in
order to tie the hands of their successors.2 For any
voting rule, investment should continue until a steady
state is reached, and the equilibrium steady states are
monotonically increasing in q. For any q rule except
unanimity, this steady state is lower than in the optimal
solution. Furthermore, for any voting rule including
unanimity, the speed of investment along the transition
path to the steady state is slower than in the optimal
solution, because proposers with agenda control have
an incentive to skim off resources along the way.

Our finding that a higher majority requirement leads
to higher long-run public investment and hence more
dynamically efficient public policy provides a formal
rationale for Wicksell ([1896] 1967), who, more than
a century ago, advocated unanimity as the only rule
guaranteeing Pareto improvements. However, in our
dynamic setting, the impact of the voting rule on the
economic outcomes is more complex (and perhaps sur-
prising): Even with unanimity, the accumulation path
is predicted to be inefficiently slow, and when the
marginal value of investment is high, a higher major-
ity rule increases, rather than reduces, the amount of
rents an agenda-setting proposer can guarantee to the
district he represents.

We examine the predictions of the theory by con-
ducting a carefully designed series of controlled lab-
oratory experiments. In the experiments, we focus on

1 These transfers in practice take several different forms. For ex-
ample there could be redistributive effects from taxation and so-
cial welfare programs that affect districts differentially, subsidies to
district-specific industry or agriculture, etc. For simplicity, we simply
model this as an allocation of a private consumption good to each
district.
2 This intuition about dynamic effects would seem to apply to a
broader class of political systems than the single-member district
legislatures in our model.

three alternative voting rules: a dictatorship rule (D),
a simple majority rule (M), and a unanimity rule (U).
There are several reasons for examining the theory with
data from controlled experiments. First, some kind of
data are needed to discipline the theory. It is impor-
tant to identify whether the theory is at all reasonable
from a behavioral or empirical standpoint. Second,
if one is going to take the model to data, there are
clear identification advantages for experimental stud-
ies when studying a highly structured dynamic envi-
ronment such as the one in this article. In our model,
strategic behavior can be clearly identified only if there
is a precise measurement of certain state variables as
well as the actions available to the players, and for
this purpose, data from laboratory experiments that
control key variables in observable ways have some
obvious advantages over field data. The control of lab-
oratory experiments allows us to directly test the main
comparative static implication of the theory: Do higher
q rules lead to more efficient investment paths?

A third motivation for pursuing the experiments is
that the predictions and assumptions of the model seem
unintuitive and in many ways implausible. The legisla-
tors in the model are assumed to be completely rational
and selfish, with rational expectations and perfect fore-
sight about the entire infinite equilibrium path of public
policies. Any behavioral limitations, bounded ratio-
nality, or other-regarding preferences are completely
assumed away, and in principle the presence of these
factors could drastically change the predictions of the
model. Indeed, the modeling assumptions that people
are perfectly rational, purely selfish, and have perfect
foresight are abstractions, and there is ample reason to
be skeptical of the predictions that come out of such
models. This leads to the second basic question we ask:
Are the predictions of the model robust to behavioral
factors and limitations on perfect rationality that we
know exist but are assumed away in the model?

Finally, it is important to note that our model’s pre-
dictions only apply to a very small subset of the huge set
of subgame perfect equilibria in the infinite game. In
particular, there generally exist non-Markov equilibria
that lead to efficient investment paths independently of
the q rule. Such equilibria closely resemble coopera-
tive equilibria in repeated games, such at the prisoner’s
dilemma. We know from experiments that groups are
highly successful at achieving efficient outcomes in re-
peated prisoner’s dilemma and similar games (Dal Bo
2005). Hence the third basic question: Can the ineffi-
ciencies be overcome? Do efficient investment paths
emerge in these legislative bargaining games, possibly
due to the repeated game effects created by the dy-
namic environment?

The effect of q on the efficiency of public policy is
confirmed by the experimental data. A higher q rule
leads to better public policies in the form of signifi-
cantly greater public good investment. Second, in addi-
tion to these qualitative findings, the public good levels
are also quantitatively close to the predictions of the
Markov perfect equilibrium. Also consistent with this
equilibrium, players’ choices reflect non-myopic de-
cision making: The theoretical expected continuation
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value functions are the most important significant vari-
ables explaining voting behavior. Thus, the behavior in
these complicated environments appears to be largely
robust to factors outside the model, such as bounded
rationality and other-regarding preferences. Of course
the data are not a perfect match to the theory. We
observe some differences between the finer details of
the theoretical predictions and the data. The clearest
such deviation is a statistically significant overinvest-
ment in the early rounds under all voting rules. This
phenomenon is reminiscent of the finding in experi-
ments on static public good provision (by a centralized
legislature or in a voluntary provision setting), but it
is more complex in our dynamic setting: while we ob-
serve a large initial overinvestment in the early rounds,
this initial overinvestment is mostly “undone” in later
rounds, as it is usually followed by significant disinvest-
ment (in D and M) or lack of further investment (in U)
approaching the equilibrium steady state.

We view these experimental findings as an encour-
aging initial check on the validity of a few general
principles that are implied by our model, which have
the potential to be important factors in legislative deci-
sion making and can be easily isolated in a laboratory
experiment. The actual political institutions that mo-
tivate our study (parliaments, assemblies, legislatures,
etc.) are obviously far more complex than the simple
environments we study in the experiment, which, by
design, mirrors the starkness of the model. With this
in mind, it is worth noting that there do exist historical
data that bear on some of the hypotheses generated
by our theoretical model. For example, Rauch’s (1995)
study of municipal reforms during the U. S. Progres-
sive era suggests that reforms that lengthened the time
horizon of municipal governments led to an increase
in new investment in public infrastructure. There may
also be questions about robustness to other subject
pools, but in principle these latter kinds of external
validity issues are relatively straightforward (but very
costly) to resolve, by replication using subjects with
different characteristics or expertise, such as profes-
sional politicians, or by using alternative procedures
and settings tailored to the richer details of specific
institutions.

RELATED LITERATURE

This article contributes primarily to the literature on
the impact of institutions on the dynamics of public
good provision, which includes the important special
case of common-pool resources management. Along
these lines, Walker et al. (2000), Ostrom (1990), and Os-
trom, Gardner, and Walker (1994) examine both the-
oretically and empirically how communication, voting
rules, and other institutions for collective decision mak-
ing affect the outcome of commons dilemma games.
Olson (1993) and McGuire and Olson (1996) compare
the negative externalities that a democratic majority
and an autocrat might impose on society.

Related to the theoretical approach of this article is a
series of recent papers on dynamic political economy.

Battaglini and Coate (2006) study public good accu-
mulation in a different political-economic environment
and consider a different bargaining protocol. Their re-
sults are different from ours in several ways: The bud-
get in each period is endogenously determined, there
is distortionary taxation, and preferences are stochas-
tic.3 Battaglini, Nunnari, and Palfrey (2012) explore the
question of dynamic public good investment in a de-
centralized game without voting. Also related, but less
directly, is the earlier research by Boylan, Ledyard, and
McKelvey (1996) and Boylan and McKelvey (1995)
that studies a one-sector model of economic growth in
which decisions about investment are made by a com-
petitive political process. That research focuses on the
effect of commitment on investment cycles. Harstad
(2005) considers a club that decides by majority rule
whether to undertake a joint public project. He studies
how the size of this majority (that is, the q-rule adopted)
affects the incentives of each member to invest in order
to increase his or her valuation of the project.

This article is also the first experimental study of
the dynamic accumulation process of a durable public
good by a legislature. Our findings thus extend the
recent experimental literature on legislative bargain-
ing models to dynamic settings. McKelvey (1991) is
the first experimental study of legislative bargaining
models à la Baron and Ferejohn (1989). Diermeier
and Gailmard (2006), Diermeier and Morton (2006),
Frechette, Kagel, and Lehrer (2003), and others have
also reported laboratory experimental studies of leg-
islative bargaining, but only in a static setting with
purely distributive policies. Recently, Frechette, Kagel,
and Morelli (2012) have extended the experimental
analysis to policy spaces with public goods using a
model based on Volden and Wiseman (2007). All of
these works, however, limit the analysis to static en-
vironments in which only a single policy outcome is
decided. Battaglini and Palfrey (2012) study a simple
dynamic model of legislative bargaining, but limit the
analysis to purely distributive policies in which public
goods cannot be accumulated and redistribution across
periods is not possible.

Our work is also related, though somewhat less so,
to the vast experimental literature on the voluntary
provision of public goods, with many of the early con-
tributions surveyed in Choi, Gale, and Kariv (2008),
Choi et al. (2011), Duffy, Ochse, and Vesterlund (2007),
Harrison and Hirschleifer (1989), and Ledyard (1997)
specifically examine sequential contribution mecha-
nisms for provision of a nondurable public good. In
these studies, payoffs are one-shot and depend only
on the sum of investments over the entire horizon. A
few papers explore the effect of institutions (e.g., Smith
1977 and Ferejohn et al. 1982), but most work in this
area has focused on other questions, including the role
of communication, experience, other-regarding prefer-
ences, and other behavioral factors.

3 Other recent contributions in dynamic bargaining are Baron
(1996), Baron, Diermeier, and Fong (2012), Barseghyan, Battaglini,
and Coate (2011), Battaglini and Coate (2008), Duggan and Kalan-
drakis (n.d.), Kalandrakis (2004; 2009), and Penn (2009) .
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MODEL

Consider an economy in which a continuum of in-
finitely lived citizens live in n districts and each district
contains a mass one of citizens. There are two goods: a
private good x and a public good g. An allocation is an
infinite non-negative sequence of public policies, z =
(x∞, g∞) where x∞ = (x1

1, . . . , xn
1, . . . , x1

t , . . . , xn
t , . . .)

and g∞ = (g1, . . . , gt, . . .). We refer to zt = (xt, gt) as
the public policy in period t. The utility Uj of a represen-
tative citizen in district j is a function of zj = (xj

∞, g∞),
where xj

∞ = (xj
1, . . . , xj

t , . . .). We assume that Uj can be
written as

Uj (zj ) =
∞∑

t=1

δt−1[xj
t + u(gt)

]
,

where u(·) is continuously twice differentiable, strictly
increasing, and strictly concave on [0,∞), with
limg→0+ u′(g) = ∞ and limg→∞+ u′(g) = 0. The future
is discounted at a rate δ.

There is a linear technology by which the private
good can be used to produce public good, with a
marginal rate of transformation p equal to 1. The
private consumption good is nondurable, whereas the
public good is durable. Thus, if the level of public good
at time t − 1 is gt−1 and the investment in the public
good is It, then the level of public good at time t will be

gt = gt−1 + It.

Because all citizens in district j are identical, we refer
collectively to the “behavior of a district” as described
by the behavior of a representative citizen j . Hence-
forth we simply refer to district j . In period t, the
economy is endowed with Wt units of private good,
where Wt = W ∀t. The initial stock of public good is
g0 ≥ 0, exogenously given.

The public policy in period t is required to satisfy
three feasibility conditions:

xj
t ≥ 0∀j .

It + gt−1 ≥ 0∀t.

It +
n∑

j =1

xj
t ≤ Wt∀t.

The first two conditions guarantee that allocations
are non-negative. We assume that public investment
can be scaled back in the future at no cost. The third
condition requires that the current budget is balanced.
These conditions can be rewritten slightly. If we denote
y ≡ gt = gt−1 + It as the new level of public good after
an investment It when the last period’s level of the
public good is gt−1, then the public policy in period t can
be represented by a vector (y, x1

t , . . . , xn
t ). Dropping

the t subscripts and substituting y, the budget balance
constraint It + ∑n

j =1 xj
t ≤ Wt can be rewritten as

n∑
j =1

xj + [y − g] ≤ W,

recalling that we use y to denote the post-investment
level of public good attained in period t, and g for
the pre-investment level of public good inherited from
period t − 1. The one-shot utility to district j from this
public policy, (y, x1, . . . , xn), is Uj = xj + u(y).

Our interest in this article is to analyze the perfor-
mance of a class of political procedures in building pub-
lic infrastructure (i.e., generating a feasible sequence
of public policies, z). We consider a legislature where
representatives of each district bargain with each other
to decide how to divide the current period’s societal en-
dowment between public investment and private trans-
fers to each district. We consider procedures that are
time independent and have no commitment. That is,
the voting procedures are the same in every period,
and the outcome of the procedure is a public policy for
only the current period. The level of the state variable
g, however, creates a dynamic linkage across policy-
making periods. In such procedures, we characterize
the outcomes associated with symmetric Markov per-
fect equilibria.

OPTIMAL PUBLIC POLICY

As a benchmark with which to compare the equilib-
rium allocations by a legislature, we first analyze the
sequence of public policies that maximizes the sum of
utilities of the districts. This is the optimal public policy.
This optimization problem has a recursive represen-
tation in which g is the state variable, and the value
function vO(g) can be represented as

vO(g)

= max
y,x

{ ∑n
j =1 xi + nu(y) + δvO(y)

s.t
∑n

j =1 xi + y − g ≤ W, xi ≥ 0∀i, y ≥ 0

}
(1)

By standard methods (see Stokey, Lucas, and
Prescott 1989) we can show that a continuous, strictly
concave and differentiable vO(g) that satisfies (1) ex-
ists and is unique. The optimal policies have an intu-
itive characterization.4 When the accumulated level of
public good is low, the marginal benefit of investing
in g is high, and it is efficient to invest as much as
possible: In this case yO(g) = W + g and

∑n
j =1 xi = 0.

When g is high, it is efficient to reach the level of public
good y∗

O(n) that solves the unconstrained optimization
problem in (1): that is, nu′(y∗

O(n)) + δv′
O(y∗

O(n)) = 1, as
shown in the Appendix. This implies:

y∗
O(n) = [u′]−1

(
1 − δ

n

)
(2)

For gO ≥ y∗
O(n) − W, therefore, investment will stop,

yO(gO) = y∗
O(n), and without loss of generality, xi =

xo = (W + g − y) /n.5 The policy and the investment

4 A formal derivation of the properties discussed in this section is
available in the Appendix.
5 The optimal solution does not depend on the distribution of private
consumption.
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FIGURE 1. The Optimal Public Policy

functions, therefore, have the following simple struc-
ture:

yO(g) = min
{
W + g, y∗

O(n)
}
. (3)

IO(g) = min
{
W, y∗

O(n) − g
}
. (4)

This investment function implies that, in the optimal
solution, the stock of the public good converges to a
unique steady state, yo

O = y∗
O(n). In yo

O, the per agent
level of private consumption is positive: x∗ = W/n >
0. Figure 1 provides a representation of the optimal
investment path.

POLITICAL EQUILIBRIUM

We now consider a legislature, composed of a repre-
sentative from each district, that bargains over the al-
location of the economy-wide resources among private
goods and public good investment. In this mechanism,
in each period, the legislature decides on a level of
investment in the public good. The legislative policy
also includes an allocation of the budgetary surplus
(endowment minus investment) to the districts, which
is non-negative for all districts, but not necessarily uni-
form. Investment can be negative, but the amount of
negative investment cannot exceed the current stock
of public good. Thus, we can represent a policy by the
legislature at time t, by a public policy (x1

t , . . . , xn
t , yt)

that satisfies the same feasibility constraints as in the
previous section. The bargaining protocol with which a
public policy is chosen in a legislature is as follows. At
the beginning of each period an agent is chosen by na-
ture to propose a policy (x1, . . . , xn, y). Each legislator
has the same probability to be recognized as proposer.
If at least q ∈ {1, 2, . . . , n} legislators vote in favor of
the proposal, it passes and it is implemented. The legis-
lature then adjourns and meets in the following period
with a new level of public good y. If instead the policy
does not receive a qualified majority, then the status
quo policy is implemented. We assume that the status

quo is zero investment in the public good and xj = W/n
for all j . The legislature, moreover, adjourns and meets
in the following period with a new level of public
good g.

To characterize behavior when policies are chosen by
a legislature we look for a symmetric Markov perfect
equilibrium. In this type of equilibrium, equilibrium
strategies depend only on payoff-relevant information,
and all representatives use the same strategy. There-
fore, in a symmetric Markov perfect equilibrium, any
representative selected to propose at some time t uses
the same strategy, and this depends only on the current
stock of public good (g). Similarly, the probability a
legislator votes for a proposal depends only on the
proposal itself and the state g. As is standard in the
theory of legislative voting, we focus on weakly stage-
undominated strategies, which implies that legislators
vote for a proposal if and only if their expected util-
ity (current payoff plus discounted continuation value)
from the status quo is not greater than their expected
utility from the proposal. Without loss of generality,
we focus on an equilibrium in which proposals are ac-
cepted with probability one on the equilibrium path.

It is easy to verify that, in a symmetric Markov
perfect equilibrium, a proposer would either make
no monetary transfer to the other districts or would
make a transfer to exactly q − 1 legislators. An equi-
librium can therefore be described by a collection of
functions {yL(g), sL(g)} that specify the choice made
by the proposer in a period in which the state is g.
Here yL(g) is the proposed new level of public good,
and sL(g) is a transfer offered to the q − 1 other
districts.6 The proposer’s district receives the surplus
revenues xL(g) = W − yL(g) + g − (q − 1)sL(g). Asso-
ciated with any symmetric Markov perfect equilibrium
in the L game is a value function vL(g) that specifies
the expected continuation payoff of a legislator when
the state is g before the proposer is selected.

6 To ensure symmetry, q − 1 legislators are randomly selected by the
proposer.
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Contrary to the case of the previous section, the pol-
icy is now chosen by a self-interested proposer who
maximizes the utility of his own district. Given vL, the
proposer’s problem is

max
x,y,s

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x + u(y) + δvL(y)

s.t

(q − 1)s + x + y − g ≤ W

x ≥ 0, s ≥ 0

s + u(y) + δvL(y) ≥ W
n + u [g] + δvL(g)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5)

where x is the transfer to the proposer. This problem is
similar to the efficient problem (1): The first inequal-
ity is the budget balance constraint, and the following
two inequalities are the feasibility constraints.7 The last
inequality is, however, new: It is the incentive compat-
ibility constraint that needs to be satisfied if a proposal
is to be accepted by q − 1 other districts.

The solution to (5) is complicated by the fact that
the set of binding constraints is state dependent and the
value function is not typically concave in g. Despite this,
the next result shows a sufficient condition for the exis-
tence of a Markov perfect equilibrium. We say that an
equilibrium is regular if the associated value function
is continuous, nondecreasing, and almost everywhere
differentiable, and leads to a strictly concave objective
function in (5). We have the following proposition:

Proposition 1. There are a δ < 1and a W > 0 such that
for all δ > δ, and all W > W a regular Markov perfect
equilibrium exists in which the public good level is given
by

yL(g) =

⎧⎪⎨⎪⎩
y∗

1 g ≤ g1(y∗
1)

ỹ(g) g ∈ (
g1(y∗

1), g2(y∗
L)

]
y∗

L else

(6)

where y∗
1 and y∗

L are constants with y∗
L > y∗

1; g1(y∗
1),

g2(y∗
L) are functions, respectively, of y∗

1 and y∗
L; and ỹ(g)

is an increasing function of g.8

There is an intuitive explanation for the shape of the
policy function (6). For g ≤ g1(y∗

1) the proposer acts as
if the other districts did not exist, diverting resources
only toward his own district and choosing the invest-
ment without internalizing the other districts’ welfare.
This implies that the proposer can choose y∗

1 where

y∗
1 ∈ arg max

y

{
u(y) − y + δvL(y)

}
. (7)

The other districts accept this policy because the invest-
ment y∗

1, is sufficiently high to make this policy better
than the status quo. When g ≥ g1(y∗

1), the proposer

7 Because u′(0) = ∞, the constraint y ≥ 0 is never binding, and
therefore it can be ignored without loss of generality.
8 Notice that y∗

1, ỹ(g), and y∗
L also depend on δ, n, and q. The param-

eters used in the experiments are such that a regular Markov perfect
equilibrium of this game exists. In particular, with the experimen-
tal parameters, a regular Markov perfect equilibrium exists for any
δ ∈ [0, 1).

cannot afford to ignore the other districts. He first finds
it optimal to “buy” their approval by increasing g and
investing ỹ(g) > y∗

1 (in the interval
(
g1(y∗

1), g2(y∗
L)

]
):

ỹ(g) is chosen large enough to satisfy the incentive
compatibility constraint as an equality. For g > g2(y∗

L),
however, the proposer finds it optimal to offer positive
transfers of the consumption good to a minimal win-
ning coalition of districts, and to invest y∗

L. In choosing
y now the proposer must internalize the utility of q
legislators, so

y∗
L ∈ arg max

y

{
qu(y) − y + δqvL(y)

}
. (8)

It is interesting to note that when the proposer’s
strategy is constant (at y∗

1 or at y∗
L) we have a dynamic

free rider problem: An increase in investment above,
say, y∗

L, at t would induce a proportional reduction
in investment at t + 1 and so discourage public good
accumulation. This is key to understanding underin-
vestment in the steady state. When yL(g) = ỹ(g) the
dynamic free rider problem is mitigated because an
increase in g induces an increase in ỹ(g). This occurs
because the increase in g makes the incentive constraint
at t + 1 more binding, so it forces the proposer in the
following period to increase the investment in the pub-
lic good.

The next result guarantees that the equilibrium out-
come is unique:

Proposition 2. For δ > δ, and W > W as defined in
Proposition 1, the legislative game has a unique regular
equilibrium steady state, y∗

L(q, n) = [u′]−1 ( n/q−δ

n ).

Figure 2 provides a representation of the equilib-
rium. The first panel of Figure 2 represents the invest-
ment function IL(g):

IL(g) =

⎧⎪⎨⎪⎩
y∗

1 − g g ≤ g1

ỹ(g) − g g ∈ (g1, g2]

y∗
L − g else

(9)

(where for simplicity g1 is the equilibrium value g1(y∗
1),

and similarly for g2). It is interesting to note that
while in the optimal solution IO(g) is a monoton-
ically (weakly) decreasing function, in the political
equilibrium IL(g) is not monotonic (compare (9) with
the investment in the optimal solution, i.e. IO(g) =
min{W, y∗

O − g}). The non-monotonicity of the invest-
ment function is a consequence of the fact that the
incentive compatibility constraint is not always binding
and the value of the status quo is endogenous. The sec-
ond panel of Figure 2 shows the equilibrium proposed
level of the public good as a function of the state, yL(g).
This curve fully describes the dynamics of public good
provision and the steady state. The steady state level of
public good y∗

L corresponds to the point where the 45o

line intersects the investment curve.
How does the accumulation of public good in the po-

litical equilibrium compare to the optimal solution? Do
legislatures provide durable public goods efficiently?
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FIGURE 2. Legislative Game Equilibrium, I (g) and y(g)

And how does this depend on the voting rule adopted?
The next result addresses these questions.

Proposition 3. (a). 0 < y∗
L(1, n) < y∗

L(2, n) < . . . <
y∗

L(n, n) = y∗
O(n); (b) IL(g; q, n) < IO(g; n) ∀ n > 1,

∀ q = 1, . . . , n, and ∀ g ≤ y∗
O(n).

Proposition 3(a) states that the equilibrium steady
state of the legislative game is less than the steady
state of the optimal solution for any q-voting rule but
unanimity, and it is equal to the steady state of the op-
timal solution for q = n (with efficiency monotonically
increasing in q). Proposition 3(b) states that for any vot-
ing rule, including unanimity, the accumulation of the
public good that leads to the steady state is inefficiently
slow. This result arises because, in any legislative game
(including unanimity), the proposer finds it profitable
to divert some resources toward private transfers to his
own district and to q − 1 other districts (as discussed
earlier).9

Example. Let the utility function for the public good be
the power function, u(y) = 1

α
yα. The unique long-run

steady state in the optimal solution is y∗
O(n) = ( n

1−δ
)

1
1−α ,

and the unique equilibrium steady state of the legislative
game is y∗

L(n, q) = ( n
n
q −δ

)
1

1−α .

NON-MARKOV EQUILIBRIA

We have restricted our attention to symmetric Markov
perfect equilibria. However, the legislative game we
study is a dynamic game with an infinite horizon with
many subgame perfect equilibria. The Markovian as-
sumption of stationary strategies is very restrictive, and

9 Battaglini, Nunnari, and Palfrey (2010) show that these results
extend to the more general case of positive depreciation in the
technology of the durable public good. If the depreciation rate is
d, then the equilibrium steady state under a q rule is characterized
by y∗

L(q, n; d) = [u′]−1( n/q−δ(1−d)
n ). The intuition is straightforward.

There is a direct tradeoff between the discount factor (which can be
interpreted as the expected horizon of the dynamic game) and the
rate at which the public good depreciates over time.

it is possible that some other equilibria can sustain
more efficient outcomes through the use of history-
dependent strategies (punishment and rewards for past
actions).

This is common in infinite horizon games with per-
fect information. For instance, the only Markov per-
fect equilibrium of the infinitely repeated prisoner’s
dilemma has both players defect in every period. This
is because in the prisoner’s dilemma the state variable
is null (i.e., all histories lead to strategically identical
subgames), and the only Markov perfect equilibrium
corresponds to the infinite repetition of the unique
Nash equilibrium of the stage game. However, it is well
known that cooperation can be sustained by history-
dependent strategies with punishment (Aumann 1959).
Similarly, as we show next, in our legislative game
the public good accumulation in the unique symmetric
Markov perfect equilibrium is inefficient, but the op-
timal solution can be supported as the outcome of a
subgame perfect equilibrium of the legislative game.

Proposition 4. For any q, there is a δ̂ such that for
δ > δ̂ the efficient investment path characterized by the
optimal solution is a subgame perfect Nash equilibrium
of the legislative game.10

In the Appendix, we derive nonstationary strategies
for the legislative game whose outcome is the efficient
level of public good (the optimal solution) and show
that these strategies are a subgame perfect Nash equi-
librium.11 We analyze separately the cases with q = 1,

10 Looking ahead to the next section, with the parameters of the
experiments, the threshold δ̂ defined in Proposition 4 is equal to
0.91 for q = 1 (D), 0.68 for q = 3 (M), and 0.87 for q = 5 (U). We
use δ = 0.75 in all the experimental sessions, which means that the
nonstationary strategies we propose can support the efficient steady
state (400) in M, but not in D or U. In U, the highest steady state
sustainable with these nonstationary strategies is 215, whereas in D
it is 50.
11 Our goal is to show that the optimal solution is the outcome of
some subgame perfect Nash equilibrium of the legislative game. We
do not claim that the strategies proposed in the proof of Proposi-
tion 4 are the best punishment schemes, and there may be different
nonstationary strategies that work for lower δ.
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q = 2, . . . , n − 1, and q = n, because in the two extreme
cases the potential for punishment is reduced.

In all cases, the strategy for the legislator recognized
as the proposer is to propose the optimal level of invest-
ment, I∗

O(g), and to share equally among all committee
members W − I∗

O(g) as private transfers. The voters’
strategy entails voting “yes” to a proposal in accor-
dance with equilibrium if no prior deviation has been
observed, and to switch to a punishment phase after a
single deviation by any proposer. Deviation by voters
(as well as deviations from punishment strategies) are
punished in the same way as deviation by proposers.

For q = 2, . . . , n − 1, a deviation is punished by (a)
rejecting an inefficient proposal, (b) stopping the ac-
cumulation of the public good, and (c) excluding the
deviator from positive private transfers in any future
proposal. For q = 1, the, proposer does not need the
approval of any other member to implement a public
policy, and therefore, there can be no punishment in
the event he is recognized as the proposer. In this case,
a deviation is punished by reversion to the Markov per-
fect equilibrium characterized in the previous section.
For q = n, everyone’s vote (including the deviator’s)
is needed to pass a punitive proposal, and thus, there
is no enforceable harsher punishment than the status
quo policy. In this case, a deviation is punished by im-
plementing the status quo policy in all future periods.

The idea of the proof is simple: The required strategy
configurations are such that any member who deviates
from the prescribed proposal or from the prescribed
punishment is certain to be punished. Members expect
the punishment to be enforced because they expect
that anyone who fails to punish a deviator will in turn
be punished, and so on.

EXPERIMENTAL DESIGN

The experiments were all conducted at the Caltech So-
cial Science Experimental Laboratory using students
from the California Institute of Technology. Subjects
were recruited from a database of volunteer subjects.
Six sessions were run, using a total of 90 subjects. No
subject participated in more than one session. In all
sessions, the committees were composed of five mem-
bers (n = 5), the discount factor was 3/4 (δ = 0.75), the
exogenous amount of resources in each period was 20
(W = 20), and the current-round payoff from the pub-
lic good was proportional to the square root of the stock
at the end of that round (u(y) = 1

α
yα, with α = 0.5).12

Two sessions were run using a simple majority require-
ment to pass a proposal (q = 3, M), two sessions using
a unanimity requirement (q = 5, U), and two sessions
under a dictatorship rule (q = 1, D). Table 1 summa-
rizes the theoretical properties of the equilibrium for
the three treatments. It is useful to emphasize that, as

12 Payoffs in experimental dollars were calibrated so subjects could
trade in fractional amounts. We do this to reduce the coarseness of
the strategy space and allow subjects to make budget decisions in line
with the symmetric Markov perfect equilibrium in pure strategies.
This is particularly important for the dictatorship treatment where
the steady-state level of the public good is 1.38.

TABLE 1. Experimental Parameters and
Equilibrium

Majority Rule n q (g1, g2) y∗
1 y∗

L gP y∗
P

Simple 5 3 (4,18) 8 29.83 380 400
majority (M)

Dictatorship (D) 5 1 (1,1) — 1.38 380 400
Unanimity (U) 5 5 (4.380) 6 400 380 400

TABLE 2. Experimental Design

Majority Rule n q # Committees # Subjects
Simple majority (M) 5 3 60 30
Dictatorship (D) 5 1 60 30
Unanimity (U) 5 5 60 30

proven in the previous section, given these parameters
the steady state is uniquely defined for all treatments.

Discounted payoffs were induced by a random termi-
nation rule in which an eight-sided die was rolled after
each round in front of the room, with the outcome
determining whether the game continued to another
round (with probability .75) or was terminated (with
probability .25). This is a standard technique used in
the experimental literature to preserve the incentives
of infinite horizon games in the laboratory (Dal Bo
2005, Duffy and Ochs 2009, Palfrey and Rosenthal
1994, Roth and Murnigham 1978). All sessions were
conducted with 15 subjects, divided into three commit-
tees of 5 members each. Committees stayed the same
throughout the rounds of a given match, and subjects
were randomly rematched into committees between
matches. A match consisted of one multiround play of
the game that continued until one of the die rolls even-
tually ended the match. As a result, different matches
lasted for different lengths. Table 2 summarizes the
design.

Before the first match, instructions were read aloud,
followed by a practice match and a comprehension
quiz to verify that subjects understood the details of
the environment including how to compute payoffs.
The experiments were conducted via computers.13 The
current-round’s payoffs from the public good stock
(called project size in the experiment) were displayed
graphically, with the stock of the public good on the hor-
izontal axis and the payoff on the vertical axis. Subjects
could click anywhere on the curve and the payoff for
that level of public good that appeared on the screen.

In the M and U treatments, each round had two sep-
arate stages, the proposal stage and the voting stage. At
the beginning of each match, each member of a com-
mittee was randomly assigned a committee member
number, which stayed the same for all rounds of the
match. In the proposal stage, each member of the com-
mittee submitted a provisional budget for how to divide
the budget between the public good, called project

13 The computer program used was an extension to the open-source
Multistage game software. See http://multistage.ssel.caltech.edu.
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investment, and private allocations to each member.
After everyone had submitted a proposal, one was
randomly selected and became the proposed budget.
Members were also informed of the committee mem-
ber number of the proposer, but not informed about
the unselected provisional budgets. Each member then
cast a vote either for the proposed budget or for the
backup budget with zero public investment and equal
private allocations. The proposed budget passed if and
only if it received at least qvotes. Payoffs for that round
were added to each subject’s earnings and a die was
rolled to determine whether the match continued to
the next round. If it did continue, then the end-of-
round project size became the next round’s beginning-
of-round project size. The D treatment followed the
same procedure for the proposal stage, but did not
involve a voting stage: after everyone had submitted
a proposal, one was randomly selected to be the com-
mittee decision in that round.

At the end of the last match each subject was paid
privately in cash the sum of his or her earnings over
all matches plus a showup fee of $10. Earnings ranged
from approximately $20 to $50, with sessions lasting
between one and two hours. There was considerable
range in the earnings and length of sessions because of
the random stopping rule.

EXPERIMENTAL RESULTS

Public Good Outcomes

Median Public Good Stock. We start the analysis of
the experimental results by looking at the long-run
stock of public good by treatment. We consider as the
long-run stock of public good the stock reached by a
committee after 10 rounds of play.14 Table 3 compares
the theoretical and observed levels of public good by
treatment. To aggregate across committees, we use the
median level of the public good from all committees
in a given treatment at round 10 (y10

mdn). Similar results
hold if we use the mean or other measures of central
tendency.15 We compare this to the stock predicted by
the Markov perfect equilibrium of the legislative game
after 10 periods (y10

L ) and to the stock accumulated in
the optimal solution after 10 periods (y10

O ).
How do committees get to these stocks of public

good? Figure 3 gives us a richer picture, showing the
time series of the stock of public good by treatment.16

14 In the experiment, the length of a match is stochastic and de-
termined by the roll of a die. No match lasted longer than 13
rounds, and we have very few observations for rounds 11–13.
The exact distribution of match lengths is reported in Table 11
and Figure 6 in the supplemental Online Appendix (available at
http://www.journals.cambridge.org/psr2012008).
15 In the D and M treatments, the medians are somewhat higher
than the means in early periods and lower in later periods, but the
differences are small. In the supplemental Online Appendix, we
report averages, medians, and standard errors of the stock of the
public good by round for each treatment. The statistical tests in the
remainder of this section compare average stocks between different
treatments using t-tests.
16 These and subsequent figures show data from the first 10 rounds.
Data from later rounds (11–13) are excluded from the graphs be-

TABLE 3. Long-Run Stock of Public
Good, Theory vs. Results by Treatment

Majority Rule q y10
mdn y10

L y10
O

Dictatorship (D) 1 12.5 1.38 200
Simple majority (M) 3 30.33 29.83 200
Unanimity (U) 5 63.13 72 200

The horizontal axis is the time period, and the vertical
axis is the stock of the public good. As in Table 3, we use
the median level of the public good from all commit-
tees in a given treatment. Superimposed on the graphs
are the theoretical time paths (represented with solid
lines), corresponding to the Markov perfect equilibria
and to the optimal solution.

Table 3 and Figure 3 exhibit several systematic reg-
ularities, which we now discuss in comparison with the
theoretical time paths.

FINDING 1. Higher q leads to higher public good
production: Dictatorship leads to lower public good
production than simple majority and unanimity; una-
nimity leads to higher public good production than sim-
ple majority. According to t-tests,17 the average stock of
public good is significantly lower in D than in U in every
single period. This difference is statistically significant
at the 1% level (p-value < 0.01) in every period. The
stock of public good is larger in M than in D and larger
in U than in M in every single period. These differences
are statistically significant for periods 1 through 6.18

The lack of statistical significance for the later rounds
is due to the small sample size for the M treatment.19

Not only are the differences statistically significant
but they are also large in magnitude. The median stock
of public good is two times greater in the U treatment
than in the D treatment, averaged across all 13 rounds
for which we have data (20.1 in D vs. 31.7 in M vs.
39.8 in U). The differences between the three voting
rules are relatively small in the initial round, but they
increase sharply as more rounds are played. By round
10, the differences are very large (12.5 vs. 30.3 vs. 63.1).

FINDING 2. All voting rules lead to significantly
inefficient long-run public good levels. The optimal

cause there were so few observations. The data from later rounds are
included in all the statistical analyses.
17 The p-values associated with these tests are reported in the sup-
plemental Online Appendix. The null hypothesis of a t-test is that the
averages in the two samples are the same. We are treating a single
committee as the unit of observation.
18 The difference between the average in D and the average in M is
significant at the 10% level (p-value < 0.10) in periods 1, 8, 9; at the
5% level (p-value < 0.05) in periods 2; and 6 and significant at the 1%
level (p-value < 0.01) in periods 3,4, and 5. The difference between
the average in U and the average in M is significant at the 10% level
(p-value < 0.10) in period 5; significant at the 5% level (p-value <
0.05) in periods 3, 4, and 5; and significant at the 1% level (p-value <
0.01) in periods 1, and 2.
19 Due to the stochastic length of each match, only six committees
reached round 7 or above, and only three committees reached round
10 in the M treatment.
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FIGURE 3. Median Time Paths of the Stock of g, All Treatments

steady state is y∗ = 400, and the optimal investment
policy is the fastest approach: Invest W in every period
until y∗ is achieved. After 10 rounds, the median stock
of public good achieved with the optimal investment
trajectory is 200. With a legislature, the median stock
of public good levels out at about 15 under dictator-
ship, at about 30 under simple majority, and at about
60 under unanimity. The median stock averages 14.5
in rounds 7–10 in D, 31.8 in rounds 7–10 in M, and
57.9 in rounds 7–10 in U. These very inefficient long-
run public good levels occur in spite of initial round
median investment that is fully efficient (I = W) in M
and U20 and very close to efficiency (I = 0.94W) in D.
In all treatments the average stock of public good in
the last rounds (rounds 8 on) is significantly smaller
than the level predicted by the optimal solution (the
level attainable investing W each round) according to
the results of a t-test on the equality of means (p-value
<0.01).

FINDING 3. In all voting rules, there is overinvest-
ment relative to the equilibrium in the early rounds.
This is followed by either negative investment (in the
D and the M treatment) or by zero investment (in the
U treatment) approaching the theoretical predictions.
The median investment levels in the first two rounds
are (18.8, 11.3) in D, (20, 18.3) in M, and (20, 20) in

20 In M efficient investment occurs only in the first round, whereas
in U it occurs in the first two rounds.

U. As a result the median public good stock by the
end of round 2 equals, respectively, 26.3, 26.83, and 40.
This compares with equilibrium investment policies in
the first two rounds equal to (1.38, 0) for D, (8, 6)
for M, and (6, 6) for U, and a predicted stock equal
to 1.38 for D, 14 for M, and 12 for U.21 Thus, in all
treatments, committees overshoot the equilibrium in
early rounds by a factor of 20 (D), 2 (M), and 3 (U).
This overshooting is largely corrected in later rounds,
either via disinvestment (in D and M) or an arrest in
investment (in U). In the M treatment, convergence
is especially close to equilibrium, with the difference
between the median public good levels and the equi-
librium public good levels in the last four rounds of data
measuring less than 2 units of the public good (31.79
vs. 29.83). A similar pattern of overshooting in the D
mechanisms is also evident. Beginning in round 4, the
stock of public good in D declines sharply, with the
median public good stock averaging 16.6 in rounds 4–
10. In U, the investment slows down considerably after
the second round: The median investment in rounds 3–
10 is 0. Given the nature of the equilibrium investment
function for this voting rule (a convex function), the
investment cessation following the initial overshooting
brings the level of the stock closer to the predicted one

21 The difference between the average investment in the early rounds
and the predicted investment in these same rounds is statistically
significant at the 1% level.
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FIGURE 4. Quartiles of Time Paths of g, (a) dictatorship, (b) simple majority, and (c) unanimity

Note: The number of observations (committees) per round is reported on the x axis below the round number.

and eventually, below it (the median stock in round 10
is 63.1 vs. a predicted stock of 72).

The pattern of early overinvestment in the pub-
lic good (relative to equilibrium), followed by later
convergence to equilibrium investment levels, echoes
findings of many static public goods experiments with
voluntary contributions, which are typically repeated
for 10 or more repetitions with the same group. A typ-
ical pattern in those experiments is that groups tend
to briefly attain public good levels significantly higher
than the Nash equilibrium in early periods, which then
declines in later periods, converging toward the equi-
librium public good levels. We see something similar
in our data. This pattern may appear to be “cyclical”
in the sense of the public good stock overshooting
the equilibrium steady state and then converging back
down toward the steady state. However, the pattern
of investment over time is monotonically declining
investment in the public good. Also, note that from
the standpoint of the theoretical equilibrium, there is
not “underinvestment” in later periods. Rather, there
tends to be overinvestment (relative to the theoretical
benchmark) in early periods and behavior closer to
equilibrium in later periods.

Variation across Committees

Because of the possibility of nonstationary equilibria
it is natural to expect a fair amount of variation across
committees. Figure 3, by showing the median time path
of the stock of public good, masks some of this hetero-
geneity. Do some committees reach full efficiency? Are
some committees at or below the equilibrium? We turn
next to these questions.

Figure 4 illustrates the variation across committees
by representing, for each round, the first, second, and
third quartile of investment levels for the D (panel (a)),
M (panel (b)), and U game (panel (c)).

There was remarkable consistency across commit-
tees, especially considering this was a complicated in-
finitely repeated game with many non-Markov equi-

libria.22 A few committees invested significantly more
heavily than predicted by the Markov perfect equilib-
rium, but this only happened rarely, and nearly always
such cooperation fell apart in later rounds. The most
efficient committee in M invested W in each of the
first 7 rounds, resulting in a public good level of 140.
That committee did not invest anything for the remain-
ing two rounds. Even this very successful committee
stopped investing well short of the efficient level. The
most efficient committee in D invested W in each of the
first four rounds, resulting in a public good level of 80.
That committee disinvested the entire stock of public
good in the following round. In U only two committees
reached levels above 80, and not a single committee
invested W for more than four consecutive rounds.

These findings are perhaps surprising because, from
Proposition 4, we know that, for the parameters of
the experiment, the optimal solution can indeed be
supported as the outcome of the game in M and U
using nonstationary strategies (at least for the first 10
rounds).23 In D, even if the parameters of the experi-
ment do not allow an efficient level of the public good
to be attainable in equilibrium, using nonstationary
strategies can sustain a level of the public good much
higher than the one predicted by the Markov perfect
equilibrium, namely around 50 (with respect to 1.38).
Figure 3 and 4, therefore, make clear that the predic-
tions of the Markov perfect equilibrium are substan-
tially more accurate in all three voting rules than the
prediction of the “best” subgame perfect equilibrium
(that is the Pareto superior equilibrium from the point
of view of the agents), even when this best equilibrium

22 In periods 6–10 of the M treatment the top quartile continues
to increase. However, this is due to a small sample size: Only two
committees are in the third quartile for periods 6–9 and only one for
period 10.
23 The nonostationary strategies we propose in the proof of Propo-
sition 4 can support the efficient steady state (400) in M but not in
U. In U, the highest steady state sustainable with these strategies is
215. In both cases, the equilibrium investment in each of the first 10
rounds is equivalent to the optimal solution, that is I = W = 20.
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TABLE 4. Proposal Types

Simple Maj Unanimity
Dictatorship

Proposal Type % Prop. % Prop. % Acc. % Prop. % Acc.
INVEST W 27% 38% 98% 58% 80%
PROPOSER ONLY

∗ with positive inv 16% 6% 81% 3% 0%
∗ with no inv 7% 1% 0% — —
∗ with negative inv 14% — — — —

PROPOSER + 2
∗ with positive inv 1% 7% 59% — —
∗ with no inv — 5% 69% — —
∗ with negative inv — 5% 56% — —

UNIVERSAL
∗ with positive inv 19% 22% 93% 29% 68%
∗ with no inv 2% 6% 10% 4% 6%
∗ with negative inv 3% 7% 40% 6% 19%

Note: Number of observations: 1,650 for D, 1,084 for M, and 1,290 for U.

is unique and reasonably focal (being the efficient so-
lution). This observation may undermine the rationale
for using the “best equilibrium” as a solution concept.

Proposals and Coalitions

We now turn to a descriptive analysis of the proposed
private transfers of the current consumption good, as a
function of g and q. For this analysis we focus primarily
on the number of members receiving significant pos-
itive tranfers in the proposed allocation and whether
the proposals had negative investment in the public
good. We break down the proposed allocations into
four canonical types: (1) Invest W: 100% allocation
to the public investment; (2) Proposer only: the allo-
cation divided between public investment and private
consumption of the proposer only; (3) Proposer + 2:
the allocation divided between public investment and
a coalition that includes the proposer and two other
members of the committee (notice that this is a min-
imal winning coalition in M); and (4) Universal: posi-
tive private allocations to all five members.24 The last
three categories are further broken down by whether
investment in the public good is positive, zero, or
negative.

Table 4 shows the breakdown of proposals for the
three treatments. In each treatment, the first column
lists the proportion of proposals of each type that were
proposed at the provisional stage (i.e., before a pro-
posal was randomly selected to be voted on). The sec-

24 There are two residual categories, not shown in the table, where
positive transfers are offered to exactly two or four members. In M
and U, this never happened with exactly two members; there were 85
provisional proposals of this kind offered to exactly four members,
and when these were observed, they were always accepted. In D,
around 11% of provisional proposals belong to these two categories:
32 provisional proposals with two members and 154 with four mem-
bers.

ond column gives the proportion of proposals of each
type that passed when they were voted on.

FINDING 4. In all treatments, most proposals are
either (i) invest the entire budget or (ii) universal pri-
vate allocations with positive investment. The propor-
tion of proposals that belong to these two categories
increases with the majority requirement adopted. With
all voting rules, most proposals were to either invest
W or universal allocations with a positive amount of
investment. In D, these two proposal types account
for 46% of all budget proposals (including provisional
budget proposals); in M and U, these two types account,
respectively, for 60% and 86%. Proposals that offered
private allocation to the proposer only were quite rare
in M and U, but not in D (where they account for
37% of all provisional proposals). Proposals with zero
or negative investment occurred 26% of the time in
D committees, 23% of the time in M committees, and
10% of the time in U committees. In contrast to the
data, the Markov perfect equilibrium proposals should
have been concentrated in the two categories: “pro-
poser only” and MWC. However, it should be noted
that even when transfers are provided to more than
a minimum winning coalition, it is concentrated on a
minimum winning coalition.

Because one of the most common proposal types is
one that offers some positive transfer to all members
of the committee, it is interesting to check whether
transfers are egalitarian or whether they are mainly
concentrated on a minimal winning coalition of voters.
Figure 5 shows the cumulative distribution of transfers
in provisional proposals when committee members are
indexed in decreasing order of their allocation.

FINDING 5. In D and M, a minimal winning coali-
tion of players receives a more than proportional share
of transfers. In U, transfers tend to be more egalitarian.
In the D treatment, 75% of the private transfers go
to the proposer. In the M treatment, 80% go to the
proposer and two other minimum winning coalition
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FIGURE 5. Cumulative Distribution of Private Transfers, All Treatments

TABLE 5. Logit Estimates

(1) (2) (3) (5)
Treatment M M U U
EU(proposal)-EU(sq) 0.12∗∗∗ (0.03) 0.11∗∗∗ (0.03)
EU(proposal) 0.13∗∗∗ (0.03) 0.12∗∗∗ (0.03)
EU(status quo) −0.12∗∗∗ (0.02) −0.11∗∗∗ (0.01)
Constant 0.25∗ (0.11) −1.65 (1.17) 1.05 (0.91) −0.45 (0.52)
Pseudo-R2 0.2815 0.2885 0.2049 0.2104
Observations 936 936 1032 1032
Notes: Dependent var: Pr {vote = yes}. SE clustered by subject in parentheses; ∗ significant at 10% level;
∗∗ significant at 5 significant at 5% level; ∗∗∗ significant at 1% level.

partners, and more than 90% go to the proposer and
three other committee members. Thus, universal allo-
cations are not even close to equitable in the sense of
giving all coalition members the same allocation. In U,
proposed allocations of the private good are relatively
equitable; the proposer is allocated 23%, and the mem-
ber allocated the least receives 19% on average. The
observations about proposed transfers, summarized in
Findings 4 and 5, are similar to findings in other ex-
periments on legislative bargaining (Frechette, Kagel,
and Lehrer 2003; Frechette, Kagel, and Morelli 2012)
and take-it-or-leave-it bargaining. For example, even in
the simplest bargaining game—–the ultimatum game—–
proposers offer somewhat more than the equilibrium
offer to be sure the responder will “vote” for it (Guth
Schmittberger, and Schwarze 1982).

Voting Behavior

Testing for Non-myopic Behavior. Table 5 displays
the results from logit regressions25 where the depen-
dent variable is vote (0 = no; 1 = yes). An observa-
tion is a single voter’s vote decision on a single pro-

25 The results presented in Tables 5 and 7 are robust to the use of a
Probit specification.

posal.26 The proposer’s vote is excluded.27 The data
are broken down according to the treatment (M or
U). The independent variables are EU(status quo), the
expected value to the voter of a “no” outcome (in-
cluding the discounted theoretical continuation value),
and EU(proposal), the expected value to the voter of
a “yes” outcome. Theoretically, a voter should vote
yes if and only if the expected utility of the proposal
passing is greater than or equal to the expected utility
of the status quo. This would imply a negative coef-
ficient on EU(status quo) and a positive coefficient
on EU(proposal), with the magnitudes of these coeffi-
cients being approximately equal.

FINDING 6. Voter decision making is non-myopic.
The results from Tables 5 are clear. The main effect on

26 We cluster SEs by subject to take into account possible correla-
tions among decisions taken by the same individuals. We also tried
the SE correction by clustering by committees, and the results are
nearly identical. Specifically, clustering by committees instead of by
individuals causes minor changes to the significance of coefficients
in only a handful of places: The constant in column (1) of Table 5 is
significant at the 5% rather than 1%; EU(proposal) lagged in column
(2) of Table 8 is significant at the 5% level rather than 1%; I lagged
in column (2) of Table 8 is significant at the 10% level rather than
5%.
27 Proposers vote for their own proposals nearly 100% of the time
(233 times out of 234 in M, and 254 times out of 258 in U).
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TABLE 6. Proposal Acceptance Rates, Theory versus Experiments

Simple Maj Unanimity

Proposal Type % Acc as Pr % Rej as Pr % Acc as Pr % Rej as Pr
INVEST W 100% (84) 0% (2) 100% 0% (28)
PROPOSER ONLY

∗ with positive inv 100% (9) — — 0% (7)
∗ with no inv — 0% (2) — —
∗ with negative inv — — — —

PROPOSER + 2
∗ with positive inv 100% (10) 0% (7) — —
∗ with no inv 100% (13) 0% (6) — —
∗ with negative inv 60% (5) 100% (3) — —

UNIVERSAL
∗ with positive inv 100% (42) 0% (3) 100% (48) 0% (23)
∗ with no inv 0% (1) 67% (9) 100% (3) 0% (17)
∗ with negative inv 0% (6) 100% (9) 0% (1) 77% (13)

Notes: “% Acc as Pr” is the percentage of accepted proposals that theory predicts to pass and “%
Ref as Pr” is the percentage of refused proposals that theory predicts to be refused. The number of
observations is in parentheses.

voting is through the difference between the expected
utility of the status quo and the proposal. The signs of
the coefficients are highly significant, large in magni-
tude, and not significantly different from each other in
absolute value. The constant term is not significantly
different from zero or weakly significant (only in one
specification), suggesting that voters are not a priori
inclined to favor or disfavor proposals.

Proposal Acceptance Rates. The theory predicts that
all proposals should pass. Is this consistent with the
data? Table 4 displays the probability that the proposal
will pass for M and U proposals.

FINDING 7. The vast majority of proposals pass.
Overall, 82% of the M proposals and 69% of the U
proposals receive committee support. Many of the M
proposals are unanimously supported, especially the
“invest W” proposals and the universal proposals with
positive investment.28

Acceptance rates differ by type of proposal. Some
kinds of proposals are rejected somewhat frequently.
This is particularly true for proposals with negative in-
vestment. In M committees, only 57% of proposals with
negative investment pass, and in U committees, only
19% pass. Proposals that give private allocation only to
the proposer also fare relatively poorly, passing 81% of
the time in M committees and 0% of the time in U com-
mittees. The most common proposal types, “invest W”
and universal with positive investment, nearly always
pass. The acceptance rates for proposals to invest ev-
erything are 98% and 80% for the M and U treatments,
respectively. The corresponding acceptance rates for
universal proposals with positive investment are 93%
and 68%. One surprise in the data is the relatively low
acceptance rates for MWC proposals in M.

28 In M, 67% of the “invest all” proposals pass unanimously, and 40%
of universal proposals with positive investment pass unanimously.

Even if our legislative game is different from the
standard Baron-Ferejohn setting, it is interesting to
note that these numbers are in line with the accep-
tance rates for first-round proposals in experiments
testing that bargaining protocol (with simple majority):
In Frechette, Kagel, and Morelli (2003) 96.4% of first-
round proposals are accepted (closed rule treatment),
whereas in Kagel, Sung, and Winter (2010) 89% of first-
round proposals pass when the cost of delay is high and
72% pass when the cost of delay is low (both numbers
refer to the control treatment without a veto player).

Table 6 instead displays the percentage of accepted
proposals that are predicted by the theory to be ac-
cepted and the percentage of refused proposals pre-
dicted by the theory to be refused, divided by pro-
posal type. Theoretically, legislators should support a
proposal if the expected value to them of a “no” out-
come (including the discounted theoretical continua-
tion value) is smaller than the expected value to them of
a “yes” outcome. We say that theory predicts a proposal
to pass in M (U) if the expected utility of the proposal
passing is greater than or equal to the expected utility of
the status quo for at least three (for all five) legislators.

The theory does remarkably well. Overall, the voting
outcome is correctly predicted by the theory around
85% of the times for M and around 70% of the time
for U. The cases that the theory fails to predict are
proposals with positive investment that should be re-
jected but instead pass and proposals with negative or
no investment that should be accepted but instead fail.

One possible explanation for this discrepancy be-
tween voting behavior and theoretical prediction is
that, rather than playing a stationary equilibrium, some
committees are supporting more efficient allocations
by using nonstationary strategies. This possibility is
in line with recent experimental results on repeated
games: Dal Bo (2005) and Dal Bo and Frechette (2011)
suggest the likelihood that in these games the infinite
horizon dynamics allow efficient or nearly efficient
public goods provision.
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TABLE 7. Logit Estimates

(1) (2)
Treatment M U
EU (status quo) −0.08∗∗∗ (0.03) −0.15∗∗∗ (0.03)
EU (proposal) 0.08∗∗∗ (0.03) 0.14∗∗∗ (0.03)
P 0.21∗∗∗ (0.05) 0.17∗ (0.09)
I 0.05∗∗∗ (0.01) 0.03∗ (0.02)
h −2.04∗ (1.1) 0.83 (0.96)
greed −1.21∗∗ (0.50) −0.31 (0.26)
constant −0.29 (1.08) −2.04 (1.83)
Pseudo-R2 0.3752 0.2340
Observations 936 1032
Notes: Dependent var: Pr {vote = yes}. SE clustered by sub-
ject in parentheses; ∗ significant at 10% level; ∗∗ significant at
5% level; ∗∗∗ significant at 1% level.

Behavioral Factors Affecting Voting. We next ex-
plore the extent to which voting behavior depends on
factors other than just the expected utility from the
status quo and the expected utility from the current
policy proposal (this is the basic assumption from the
Markov perfect equilibrium). For instance, the voting
behavior could be affected by nonstationary strategies
or other-regarding preferences. Table 7 reports the re-
sults of a logit regression of voting behavior on the
same variables in Table 5, but includes four additional
regressors that could indicate some degree of punish-
ment or reward behavior being used to affect propos-
als and support equilibrium outcomes that differ from
the theoretical stationary solutions: the proposed in-
vestment level I; a Herfindahl index, h, that captures
how unequal the proposed allocation of private good
is across committee members; P, the amount of pri-
vate allocation offered to the voter; and the amount
of own-private allocation by the proposer (that we call
“greed”). In the case of nonstationary behavior, the
sign on I should be positive (in the sense that voting
strategies punish proposals that do not offer sufficient
public good), whereas the sign on h and greed should be
negative (in the sense that greedier or less egalitarian
proposals are punished with more negative votes).

The results are presented in Table 7. First, we notice
that adding these new variables does not change the
main result from Table 5: The coefficients on EU(status
quo) and EU(proposal) still have the correct (opposite)
signs, are not significantly different from each other,
and are highly significant. Some of the new factors
we introduced in our analysis in Table 7 are statisti-
cally significant, but have a smaller impact. For the M
treatment, all three of the “nonstationary” variables
have the expected sign, and two are highly significant
(I and greed). More efficient proposals receive greater
support, as do proposals that are less greedy. The size
of the positive sign of the effect of I, however, seems
too small to provide evidence in favor of an equilibrium
in which non Markovian strategies reward efficient be-
havior, especially because a positive sign is consistent
with equilibrium behavior.29 Therefore we are reluc-

29 In the M treatment, the significant coefficient on I is probably due
to spurious correlation. When g is small, the equilibrium predicts

tant to conclude that the significant coefficient on I is
indicative of nonstationary behavior. In contrast, the
significance of the coefficient of greed demonstrates
the existence of voting behavior that rewards exactly
the types of proposals we see more of relative to the
equilibrium predictions (invest W and universal). Re-
sults for the U treatment are similar, but the new vari-
ables have less importance in explaining the variance
in voting behavior: I, h, and greed all have the right
sign, but here only I is (weakly) significant.

Behavioral Factors Affecting Proposals. Finally, we
look at how current proposals treat the proposer of the
previous round, depending on how a current proposer
was treated by the last proposer. The hypothesis is
that how well the current proposer treats the previous
proposer increases according to how well the previous
proposer treated him of her. Because the only way the
current-round’s proposer can target a punishment or
reward for the previous round’s proposer is with pri-
vate transfers, we run a regression where the dependent
variable is the current proposal’s private allocation to
the previous round’s proposer. For observations, we
use all current-round provisional budgets beginning
in round 2, excluding the provisional budget of the
previous round’s proposer. In Table 8, we report one
regression for each treatment. The independent vari-
ables we use for how well the previous round’s proposer
treated the current-round proposer are lagged versions
of EU(proposal), and of the I, h, and greed variables. In
other words, we check whether there are lagged effects
of efficiency or fairness of the previous proposal on the
current proposal’s private allocation to the previous
proposer.

The coefficient on EU(proposal)t−1 is always signif-
icant. There is a significant effect of the lagged greed
variable in M and in D and a significant effect of lagged
investment in M and U.

We conclude from this analysis that there is some
evidence of the use of nonstationary strategies, but
that subjects are non-myopic: The main determinant of
voting is the difference between the expected utility of
the status quo and the proposal, taking into account an-
ticipated future payoffs. In proposal behavior, current
proposals discriminate against previous proposers who
were too greedy (in M and D) or invested in the public
good (in M and U). The nonstationarity in behavior
seems to be motivated by spite rather than by efficiency
considerations.

DISCUSSION AND CONCLUSIONS

This article investigated the dynamic provision of
durable public goods by a legislature, operating with
procedures that entail bargaining and voting. Despite
the fact that most, if not all, public goods provided by
governments are durable, very little is known on this
subject, both from a theoretical and empirical point

a high investment level and a unanimous yes vote; when g is high,
investment is predicted to be smaller, and proposals are predicted to
pass by a bare majority.
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TABLE 8. TOBIT Estimate

(1) (2) (3)
Treatment D M U
EU(proposal)t−1 0.29∗∗∗(0.07) 0.11∗∗∗(0.04) 0.13∗∗∗(0.02)
It−1 −0.01(0.02) −0.04∗∗(0.02) −0.10∗∗∗(0.02)
ht−1 11.77(8.35) 7.87(8.43) 2.26(12.50)
greedt−1 −20.51∗∗∗(7.46) −24.36∗∗∗(5.21) −0.88(3.71)
constant −38.73∗∗∗(11.33) −15.74∗∗(7.84) −31.01∗∗∗(6.59)
Pseudo-R2 0.0426 0.0155 0.0521
Observations 1080 696 792

Notes: Dependent var: Private allocation offered to previous round’s proposer. SE clus-
tered by subjects in parentheses; ∗ significant at 10% level; ∗∗ significant at 5% level; ∗∗∗
significant at 1% level.

of view. We attempt to provide a first answer to some
basic questions that can be a helpful starting point for
further research on the politics of dynamic public good
provision.

We ask two main questions: Do legislatures provide
public goods efficiently in a dynamic setting? To what
extent does this efficiency depend on the voting rule
adopted by the floor? The theoretical properties of the
Markov perfect equilibrium in our legislative bargain-
ing game imply that the steady-state level of public
investment approved by a legislature is inefficiently
low for any voting rule but unanimity: The inefficiency
of the long-run steady state decreases with the ma-
jority requirement adopted and disappears completely
when a proposal on resources allocation passes only
with a unanimous vote. However, even with unanimity,
convergence to the steady state is inefficiently slow,
because the proposer will appropriate rents along the
path.

Our model, with supporting evidence from a labora-
tory experiment, identifies an important force by which
supermajority voting systems may increase efficiency in
the provision of durable public goods. Of course, there
are some forces outside the model that may work in
the opposite direction. Buchanan and Tullock (1962)
argue that supermajority requirements can increase
transaction or bargaining costs in the decision-making
process (but reduce external costs, as in our model).
Unanimity and near-unanimity rules can create polit-
ical hold-up problems; Barry (1965) argues this point
in the context of legislative bargaining and pork-barrel
politics. Although such arguments have generally been
made mainly in the context of static models, part of
the benefits of higher q that we find arise out of the
dynamic nature of the public decision in our model,
which is different from earlier models. The extent to
which those various intuitions about the various ef-
fects of q on transaction and external costs apply more
broadly in dynamic political decision making is an im-
portant open question. Our work contributes to this
literature by highlighting an additional cost associated
with bargaining in legislatures with unanimity that was
not previously considered: Unanimity may lead to an
efficient steady state, but the speed of convergence is
inefficiently slow. The delay in investment may gener-
ate a significant loss of welfare.

The experimental analysis of three alternative vot-
ing rules (simple majority and the two polar extremes,
dictatorship and unanimity) supports these key pre-
dictions. A higher majority requirement leads unam-
biguously to significantly higher public good produc-
tion. This result confirms, from an experimental point
of view, the importance of institutions in public good
provision and the fact that incentives matter in a way
predicted by complex theoretical models. In all cases,
investment is generally below the Pareto efficient lev-
els, regardless of the voting rule used. Although we
often observe more investment than predicted in the
early stage of the game, overinvestment does not per-
sist: The long-run public good levels approximate the
Markov perfect equilibrium steady state.

The final questions we attempt to address are as fol-
lows: To what extent are the models we use adequate to
study this problem? What equilibrium concepts should
be used? This latter question is a particularly important
one because, depending on the equilibrium concept, we
can have very different predictions for the same model.
It is clearly difficult to identify the equilibrium adopted
by players, but the analysis of proposal and voting
behavior provides some interesting insights. First, as
discussed in the section, “variation across committees,”
we observe a consistent pattern of behavior across com-
mittees, despite the fact that we have a multiplicity of
potential equilibria. The Markov perfect equilibrium
that we have adopted as a benchmark does not fully
capture the complexity of the agents’ strategies, which
also depends to a limited extent on other factors, as
shown in Table 7. However, these nonstationary effects
are small, and the Markovian equilibrium benchmark
is far closer to the data than the prediction of the best
subgame equilibrium sustainable with nonstationary
strategies, the alternative benchmark that is routinely
applied when studying cooperation in repeated games.
In our setting, this alternative would predict efficient
outcomes for any q > 1, which is far off the mark.

There are many possible directions for the next steps
in this research. On the experimental side, our design
was intentionally very simple and used a limited set
of treatments. The theory has interesting comparative
static predictions about the effect of other parameters
of the model that we have not explored in this work,
such as the discount factor, the production technology,
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preferences, and endowments. The theoretical model
is easily adapted to these extensions. For example,
a higher discount factor increases both the optimal
steady state and the equilibrium steady state of the
durable public good for all values of q and n. For sim-
ilar reasons positive depreciation in the public good
technology leads to a decrease in the steady state of
the Markov equilibrium studied here.

We have also limited the analysis to legislatures that
differ on the q-rule adopted and use a specific proce-
dure. It would be interesting to consider the impact
of different proposal and voting procedures (e.g., al-
ternating offer bargaining without a status quo alter-
native, à la Baron and Ferejohn 1989). Moreover, our
political process does not have elections and parties,
and there is no executive branch or “president” to
oversee the general interest common to all districts.
Elections, parties, and nonlegislative branches are all
important components of democratic political systems,
and incorporating such institutions into our framework
would be a useful and challenging direction to pursue.
Finally, it would be interesting to allow for a richer set
of preferences and feasible allocations, such as allowing
for diversity of preferences or multiple public goods.

APPENDIX: PROOFS OF PROPOSITIONS

OPTIMAL PUBLIC POLICY

In the steady state y(y∗
O) = y∗

O and x(y∗
O) > 0. Because y(g)

is constant for g ≥ max{y∗
O − W, 0}, it is straightforward to

show that the derivative of the value function in this region
is v′(g) = ∂

∂g [W + g − y∗
O + nu (y∗

O) + δvO(y∗
O)] = 1. Using the

first-order condition for optimality, we must have nu′(y∗
O) +

δ = 1, so

y∗
O = [u′]−1

(
1 − δ

n

)
. (10)

Proof of Proposition 1

Define a function

v1
L(g) = W − (y∗

L − g)
n

+ u(y∗
L) + δ

1 − δ

[
W
n

+ u (y∗
L)

]

= 1
1 − δ

[
W
n

+ u (y∗
L)

]
+ g − y∗

L

n

where y∗
L = [u−1]′( n/q−δ

n ). Note that this function is continu-
ous, increasing, concave, and differentiable with respect to g,
with ∂

∂g v1
L(g) = 1

n . Now define ỹ(g) implicitly by the equation:

u(̃y(g)) + δv1
L(̃y(g))

= W/n + u(g) + δ

[
W − ỹ(g) + g

n
+ u(̃y(g)) + δv1

L(̃y(g))
]
.

This equation can be rewritten as

u(̃y(g)) (1 − δ) + δ

n
ỹ(g)

= u(g) + δ2

n
g + W

n
− δ

(
u(y∗

L) − (1 − δ)
y∗

L

n

)
. (11)

Note that (11) implicitly defines a differentiable and increas-
ing function of g. To see this, note that differentiating (11)
with respect to ỹ and g gives

ỹ′(g) = u′(g) + δ2

n

(1 − δ) u′(̃y(g)) + δ

n

> 0. (12)

We can therefore define a point g2
L = min[g ≥

0 | ỹ(g) ≥ y∗
L]. This point has the property that for any g ≥

g2
L, we have ỹ(g) ≥ y∗

L; moreover, g2
L < y∗

L. Now define the
function

v2
L(g) =

⎧⎨⎩
v1

L(g) g > g2
L

W − ỹ(g) + g
n

+ u(̃y(g)) + δv1
L(̃y(g)) else.

(13)
Let g > 0 be defined by g = u′−1(1). We have Lemma A.1.

LEMMA A.1. There is a δsuch that for δ > δ, ỹ(g) and v2
L(g)

are increasing and continuous and concave, respectively in
g ∈ [g, g2

L], and in g ≥ g2
L.

Proof. We showed earlier that ỹ′(g) > 0. Furthermore, dif-
ferentiating (12) with respect to g, we have

ỹ′′(g)

=
u′′(g)

[
(1 − δ) u′ (̃y(g)) + δ

n

] −
[
u′(g) + δ2

n

]
(1 − δ) u′′ (̃y(g))̃y′(g)[

(1 − δ) u′ (̃y(g)) + δ
n

]2 .

(14)

It is clear that there is a δ such that for δ > δ, ỹ′′(g) < 0
for any g ∈ [

g, g2
L

]
. To see this, note that for δ = 1 we have

ỹ′′(g) < 0, because the numerator of (14) is smaller than 0
and its denominator is greater than 0, and recall that ỹ(g)
is continuous. For v2

L(g), note that for g ≥ g2
L the function is

linear. For g ≤ g2
L

v2
L(g) = W − ỹ(g) + g

n
+ u(̃y(g)) + δv1

L(̃y(g))

= W + g
n

+ u(̃y(g)) + (δ − 1)
ỹ(g)

n

+ δ

[
W − y∗

L

n
+ δ

1 − δ

[
W
n

+ u (y∗
L)

]]
so concavity in [g, g2

L] follows from the concavity of ỹ(g) for
δ sufficiently large. Concavity in g ≥ g2

L follows from the fact
that in this range v2

L(g) is differentiable everywhere except at
most at g2

L, and its derivative is non increasing in g. �
Define y∗

1 = arg maxy′ {u(y′) − y′ + δv2
L(y′)} and g1

L =
min[g ≥ 0

∣∣̃y(g) ≥ y∗
1 ].Note that y∗

1 < y∗
L = [u′]−1( n/q−δ

n ), an
upper bound that is independent of W, and g1

L ≤ g2
L; more-

over, g ≤ g1
L, implies ỹ(g) ≤ y∗

1. We can now construct the
following value function:

v∗
L(g) =

{
v2

L(g) g ≥ g1
L

W−y∗
1+g

n + u(y∗
1) + δv1

L(y∗
1) else

which is a continuous and nondecreasing function of g. We
can also construct the strategies

y∗
L(g) =

⎧⎪⎨⎪⎩
y∗

1 g ≤ g1
L

ỹ(g) g ∈ (
g1

L, g2
L

]
y∗

L else
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and x∗
L(g) = W − yL(g) + g − (q − 1)sL(g). We now show

that the value function v∗
L(g) and the strategies y∗

L(g) and
x∗

L(g) are an equilibrium for a sufficiently large W and δ.
Consider the proposer’s problem (5). One of two cases is
possible. First, the incentive compatibility (IC) constraint is
not binding, so the proposer can effectively ignore the other
legislators. Second, the IC constraint binds and so the pro-
poser has either to increase the level of public good, provide
positive transfers to a minimal winning coalition, or both.

Case 1: Nonbinding IC. Assume first that we can ignore the
IC constraint and set s = 0. The problem becomes:

max
y

{
W − [y − g] + u(y) + δv∗

L(y)

s.t.W − y + g ≥ 0

}
. (15)

If we ignore the constraint in (15), then it is optimal (without
loss of generality) to choose y such that

y ∈ arg max
y′

{
u(y′) − y′ + δv∗

L(y′)
}
. (16)

It is useful to have the following result:

LEMMA A.2. The threshold g1
L is a nonincreasing continuous

function of W, and for any ε there is a Wε such that for W > Wε,
then g1

L < ε.

Proof. Let k be defined as before by u′(k) = 1. Then be-
cause v2

L(y) is nondecreasing in y, y∗
1 ≥ k > 0. Let f (W) be

defined by

u(y∗
1)(1 − δ) + δ

n
y∗

1 = u(f (W)) + δ2

n
f (W) − W

n

+ δ

(
u(y∗

L) − (1 − δ)
y∗

L

n

)
.

So g1
L = max{0, f (W)}. Because f (W) is a continuous de-

creasing function of W, it is then immediate that g1
L is a

continuous and monotonically nonincreasing function of W.
It is also immediate to verify that for any ε > 0 there is a Wε

such that g1
L < ε for W > Wε. �

By Lemma A.2 we can find a W1 such that for W > W1, g1
L

is sufficiently small to guarantee that u′(y) + δv∗′
L(y) > 1 for

any g ≤ g1
L, so

y ∈ arg max
y′

{
u(y′) − y′ + δv∗

L(y′)
}

implies y > g1
L. Lemma A.1 then guarantees that for δ ≥ δ

the unique solution to (15) is y∗
1. It is easy to see that in corre-

spondence to y∗
1 we have xL(g) ≥ 0 if and only if g is greater

than or equal to max{y∗
1 − W, 0}. Because y∗

1 is bounded, this
is verified for any g ≥ 0 when W > W1, and W1 is chosen to be
sufficiently large. The IC constraint is satisfied if and only if
ỹ(g) ≤ y∗

1; that is, if g ≤ g1
L. We can therefore conclude that,

for δ > δ and W > W1, when g ≤ g1
L the optimal policy is y∗

L(g)
and x∗

L(g).

Case 2: Binding IC Constraint. When g > g1
L the IC con-

straint cannot be ignored. In this case, the problem solved by
the proposer is

max
y,s

⎧⎪⎨⎪⎩
[W − [y − g] − (q − 1)s] + u(y) + δv∗

L(y)

s.t.s + u(y) + δv∗
L(y) ≥ W

n + u (g) + δv∗
L(g)

s ≥ 0

⎫⎪⎬⎪⎭ . (17)

Note that we can assume without loss of generality that the
solution to this problem is larger or equal than y∗

1 (if this were
not the case, by increasing y the proposer would increase his
utility and relax the constraint, a contradiction). By Lemma
A.1, it follows that we can treat (17) as a concave maximiza-
tion problem when δ ≥ δ. There are two possibilities. First,
the proposer continues to provide no consumption to the
districts of other legislators, but he increases the provision of
the public good yL(g) to satisfy the incentive compatibility
constraint (no transfer case). Second, he provides consump-
tion to the districts of q − 1 other legislators and to his own
district (transfers case).

Consider the second case first, assuming s > 0. We can
write (17) as

max
y

{
W − [y − g]

−(q − 1)
[

W
n + �(g) − �(y)

] + �(y)

}
(18)

where �(·) = u(·) + δvL(·). Choosing an optimum in prob-
lem (18) is equivalent to choosing an optimum in prob-
lem: maxy{q�(y) − y}. So an optimal choice for the pro-
poser is to propose yL(g) = y∗

L This case is feasible only if
s = W

n + �(g) − �(y∗
L) ≥ 0, that is if and only if g ≥ g2

L. In the
case in which g ∈ [g1, g2] then we must have u(y) + δvL(y) =
W
n + u[g] + δvL(g), so the chosen y is ỹ(g). It follows that in

this range the optimal proposal is y∗
L(g) and x∗

L(g).
Finally, we need to show that v∗

L(g) is the expected utility
of a player when the strategies are y∗

L(g), x∗
L(g). This is im-

mediate for g > g2
L. For g ∈ [0, g2

L], observe that, by a similar
argument as in Lemma A.2, for any γ there is a Wγ such that
for W > Wγ , then ỹ(y∗

1) > γ. It follow that when W > Wg2
L
,

y∗
L(g) = ỹ(g) > g2

L for any g ∈ (g1
L, g2

L], so in this range the
value function is given by (13). Finally it is easy to see that
for W > Wg2

L
, ỹ(̃y(g)) ≥ ỹ(y∗

1) > g2
L, so the value function is

v∗
L(g) in [0, g2

L]. We conclude that there is a δ, W such that for
δ > δ and W > W the value function v∗

L(g) and the strategies
y∗

L(g) and x∗
L(g) are an equilibrium.

Proof of Proposition 2

Fix q, W, δ, and n, such that δ > δ and W > W as de-
fined in Proposition 1. Consider any regular equilibrium
v(g), y(g), x(g), with steady state y∗. We need to prove that
y∗ = [u′]−1 ( n/q−δ

n ). The IC constraint in state g if policy y(g)
is chosen is

s(y(g)) ≥ W
n

+ �(g) − �(y(g))

where �(·) = u(·) + δv(·). In the steady state, this condition
becomes: s(y∗) ≥ W

n + �(y∗) − �(y∗) = W/n > 0. In equilib-
rium, this constraint is satisfied with equality (if not, the pro-
poser could decrease s and be better off). The proposer’s
policy must therefore solve

max
y

{
W − [y − y∗]

−(q − 1)
[

W
n + �(y∗) − �(y)

] + �(y)

}
. (19)

By continuity of �(·), for any g in a neighborhood of
y∗, s(g) > 0. By continuity of the value function, this im-
plies v(g) = 1

1−δ
[ W

n + u(y∗)] + g−y∗
n in a neighborhood of y∗,

implying v′(g) = 1
n . This fact, together with the first-order

necessary condition of (19) (qu′(y) + qδv′
L(y) = 1), implies

y∗ = [u′]−1( n/q−δ

n ). �
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Proof of Proposition 3

We first prove the claims regarding the steady state. The
unique equilibrium steady state in the optimal solution is
y∗

O = [u′]−1( 1−δ

n ) and the unique equilibrium steady state
in the legislative game is y∗

L = [u′]−1( n/q−δ

n ). Notice that
1−δ

n ≤ n/q−δ

n for any q = 1, . . . n, n > 0, and δ > 0. Because
u(·) is, by assumption, increasing and concave (i.e., u′(g) > 0,
u′′(g) < 0), this implies that y∗

O ≥ y∗
L for any q = 1, . . . n,

n > 0, and δ > 0. This inequality is strict when q = 1, . . . n − 1
(i.e., when n/q > 1) and y∗

O = y∗
L when q = n (i.e., when

n/q = 1). Moreover, notice that n/q−δ

n is monotonically de-
creasing in q. Therefore, y∗

L is monotonically increasing in
q. Because y∗

O is independent of q, this also means that the
efficiency of the equilibrium steady state in the legislative
game is monotonically increasing in q.

We now want to show that—–with n > 1 and q = n—even
if y∗

L = y∗
O, the convergence to y∗

L is slower than the con-
vergence to y∗

O. To do this, we compare the two investment
functions, IO(g) and IL(g):

IO(g) = min
{
W, y∗

O − g
}
.

IL(g) =

⎧⎪⎨⎪⎩
y∗

1 − g g ≤ g1

ỹ(g) − g g ∈ (g1, g2]

y∗
L − g else.

First notice that, when n > 1, y∗
L = y∗

O > y∗
1 and y∗

L = y∗
O >

ỹ(g) for any g < g2. There are two cases: (1) g1 = 0 and (2)
g1 > 0. If g1 = 0, for any g < g2, IL(g) = ỹ(g) − g, which is
smaller than IO(g) = min{W, y∗

O − g}. If g1 > 0, for any g ≤
g1, IL(g) = y∗

1 − g < W for any g ≤ g1 and IL(g) = y∗
1 − g <

y∗
O − g for any g ≤ g1 (because y∗

O > y∗
1). This implies IL(g) <

IO(g) = min{W, y∗
O − g} for any g ≤ g1. �

Proof of Proposition 4

A) q = 2, . . . n − 1. To support the optimal stock of the
public good as the outcome of a subgame perfect Nash equi-
librium, employ the following strategy configuration:

1. Whenever a member is recognized, he proposes a public
policy x, which entails a level of investment equal to
I∗

O(g) and an even share of W − I∗
O(g) as private transfer

to all committee members; everyone votes in favor of x
(i.e., the proposal is implemented).

2. If a member j is recognized and deviates by proposing
y 
= x, every i 
= j votes against the proposal; from the
following period on, whenever j is the proposer, every
i 
= j votes against any proposal, and whenever i 
= j is
the proposer, I propose to divide W equally among all
members but j as private transfers; every i 
= j votes
for this proposal (i.e., a punishment is carried on in all
future periods in which the deviator is the proposer;
when the deviator is the proposer, the status quo is
implemented).

3. If a member k deviates by voting contrary to the strate-
gies above or if member k deviates from the prescribed
proposal in the punishment phase, implement the pun-
ishment in strategy 2 with k replacing j .

We first show that the proposer has no profitable deviation
from the equilibrium strategy on the equilibrium path. The
proposer’s payoff if she follows the equilibrium strategy is{

u(g + W) + δVEQ(g + W) if g < gO

W−(y∗
O−g)

n + u(y∗
O) + δVEQ(y∗

O) if g > gO

where

VEQ(y∗
O) = W

n
+ u(y∗

O) + δVEQ(y∗
O)

=⇒VEQ(y∗
O) = 1

1 − δ

[
W
n

+ u(y∗
O)

]
.

According to the proposed equilibrium voting strategies,
whenever the proposal is different from the equilibrium one,
a punishment will be carried out in every future period in
which the proposer is not the deviator and the status quo will
be implemented in all the other periods. Thus, all deviations
are payoff equivalent. The proposer’s payoff if she deviates
is:

W
n

+ u(g) + δVDEV(g) ∀g

where

VDEV(g) = n − 1
n

(u(g) + δVDEV(g))

+ 1
n

(
W
n

+ u(g) + δVDEV(g)
)

=⇒VDEV(g) = 1
1 − δ

[
W
n2

+ u(g)
]

<
1

1 − δ

[
W
n

+ u(g)
]

.

To check that the proposer’s strategy is an equilibrium
it is sufficient to check that the proposer has no profitable
deviation. Notice that the expected payoff from a deviation
is lower than the payoff that would derive from implementing
the status quo for the current and all future periods. We can,
thus, check that the expected payoff from the equilibrium
strategy is higher than the payoff from implementing the
status quo forever. We have three cases, depending on the
region of the state space we are in:

Case 1: g ∈ [gO, y∗
O). In this case, we want to show that:

W − (y∗
O − g)

n
+ u(y∗

O) + δVEQ(y∗
O)

≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

⇐⇒
[

u(y∗
O) − u(g)

(y∗
O − g)

]
= 1

(y∗
O − g)

∫ y∗
O

g
u′(x)dx ≥ 1 − δ

n
.

This inequality holds for any δ ∈ [0, 1]. To see this, note
that by concavity of u(·)and the optimality condition in the
efficient solution we have u′(x) > 1−δ

n for any x < y∗
O.

Case 2: g ∈ [0, gO) & (g + W) > gO. In this case, we want to
show that

u(g + W) + δVEQ(g + W) ≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

where

VEQ(g + W) = W − (y∗
O − g)

n
+ u(y∗

O) + δVEQ(y∗
O)

= W − (y∗
O − g)

n
+ u(y∗

O)

+ δ

1 − δ

(
W
n

+ u(y∗
O)

)
.
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Therefore the inequality we want to check becomes

u(g + W) + δVEQ(g + W) ≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

⇐⇒ u(g + W) + δu(y∗
O)

(1 − δ)
− u(g)

(1 − δ)
≥ W

n
+ δ

y∗
O

n
− δ

g
n

.

Using the fact that u(g + W) ≥ u(g) + u′(y∗
O)W = u(g) +

(1−δ)
n W we have a lower bound on the LHS and we can plug

it in to have

⇐⇒ u(g) + (1 − δ)
W
n

+ δu(y∗
O)

(1 − δ)
− u(g)

(1 − δ)
≥ W

n
+ δ

y∗
O

n
− δ

g
n

⇐⇒ [u(y∗
O) − u(g)] ≥ (1 − δ)

W + y∗
O − g

n
.

This inequality holds for δ ≥ δ̂ ∈ [0, 1].
We can find a lower bound on δ using the actual VDEV(g)

rather than the expression we used above (given by the ex-
pected utility of implementing the status quo for any period
following a deviation that is greater than VDEV(g) for any g).
In this case, the inequality we want to prove is

u(g + W) + δ [W − (y∗
O − g)]

n
+ δu(y∗

O)

+ δ2

1 − δ

(
W
n

+ u(y∗
O)

)

≥ W
n

+ u(g) + δ

1 − δ

[
W
n2

+ u(g)
]

⇐⇒ u(g + W) + δu(y∗
O)

(1 − δ)
− u(g)

(1 − δ)

≥ (1 − 2δ)n + δ

(1 − δ)n
W
n

+ δ
y∗

O

n
− δ

g
n

Using the fact that u(g + W) ≥ u(g) + u′(y∗
O)W = u(g) +

(1−δ)
n W we have a lower bound on the LHS and we can plug

it in to have

⇐⇒ u(g) + (1 − δ)
W
n

+ δu(y∗
O)

(1 − δ)
− u(g)

(1 − δ)

≥ (1 − 2δ)n + δ

(1 − δ)n
W
n

+ δ
y∗

O

n
− δ

g
n

⇐⇒ [u(y∗
O) − u(g)] ≥ (1 − δn)

n
W
n

+ (1 − δ)
y∗

O − g
n

.

This inequality holds for δ ≥ δ̂ ∈ [0, 1]. To see this, note that
the LHS is always positive, whereas the RHS is nonpositive
as long as δ ≥ W(2n+1)−n.

W(3n+1)−n ∈ (0, 1)—–(because n > 1 and W > 0
and in this region g ∈ (y∗

O − 2W, y∗
O − W).

Case 3: g ∈ [0, gO) & (g + W) < gO. Here we want to prove
the following inequality:

u(g + W) + δVEQ(g + W) ≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

where VEQ(g + W) = u(g + 2W) + δVEQ(g + 2W).
Note that, because u′(x) > 1−δ

n for any x < y∗
O, we

have u(g + x) > u(g) + (1−δ)
n x if (g + x) < y∗

O. Using this in-
equality we have a lower bound on the RHS, and it is sufficient

to prove that

u(g) + (1 − δ)
n

W + δVEQ(g + W)

≥ W
n

+ u(g) + δVDEV(g)

⇐⇒ VEQ(g + W) ≥ W
n

+ 1
1 − δ

[
W
n

+ u(g)
]

.

Note that V′
EQ(x) > 1/n for any x < y∗

O (as it is clear from
the equation for VEQ(y∗

O) and the condition for optimality in
the efficient solution), and thus, VEQ(g + x) > VEQ(g) + 1

n x.
This gives us a lower bound on VEQ(g + 2W) (> VEQ(g +
W) + W

n ) that we can use to get a lower bound onVEQ(g + W):

VEQ(g + W) = u(g + 2W) + δVEQ(g + 2W).

VEQ(g + W) >
1

1 − δ
u(g + 2W) + δ

1 − δ

W
n

>
1

1 − δ
u(g) + 2

W
n

+ δ

1 − δ

W
n

.

It is therefore sufficient to show that

1
1 − δ

u(g) + 2
W
n

+ δ

1 − δ

W
n

≥ W
n

+ 1
1 − δ

[
W
n

+ u(g)
]

⇐⇒
(

2 − δ

1 − δ

)
≥

(
2 − δ

1 − δ

)
.

This inequality holds for any δ ∈ (0, 1).
Next, we need to prove that there is no profitable deviation

from the prescribed voting strategy on the equilibrium path
(i.e., that the expected utility from voting “yes” to an equilib-
rium proposal is weakly higher than the expected utility from
voting “no” ). A unilateral deviation in the voting stage does
not change the outcome (i.e., the efficient proposal will be
implemented), and the only difference in the two expected
utilities (voting “yes” vs. voting “no” ) is in the continuation
values, VEQ(g) and VDEV(g), which are the same as the ones
specified for the proposer (because the punishment takes the
same form). We have three cases:

Case 1: g ∈ [gO, y∗
O). The inequality we need to show is

y∗
O − g

n
+ u(y∗

O) + δVEQ(y∗
O) ≥ y∗

O − g
n

+ u(y∗
O) + δVDEV(y∗

O)

1
1 − δ

[
W
n

+ u(y∗
O)

]
≥ 1

1 − δ

[
W
n2

+ u(y∗
O)

]
,

which clearly holds for any δ.

Case 2: g ∈ [0, gO) & (g + W) > gO The inequality we need
to show is

u(g + W) + δVEQ(g + W) ≥ u(g + W) + δVDEV(g + W)

W − (y∗
O − g)

n
+ u(y∗

O) + δ

1 − δ

(
W
n

+ u(y∗
O)

)

≥ 1
1 − δ

[
W
n2

+ u(g + W)
]

1
1 − δ

[u(y∗
O) − u(g + W)] ≥ 1

1 − δ

[
W(1 − n)

n2

]
+ y∗

O

n
− g

n
.
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Notice that u(y∗
O) ≥ u(g + W) + u′(y∗

O)(y∗
O − g − W) =

u(g + W) + 1−δ

n (y∗
O − g − W). This gives us a lower bound

on the LHS, y∗
O/n − g/n − W/n. Therefore we can check the

following inequality:

⇐⇒ y∗
O

n
− g

n
− W

n
≥ 1

1 − δ

[
W(1 − n)

n2

]
+ y∗

O

n
− g

n

⇐⇒ δ ≥ 1
n

Case 3: g ∈ [0, gO) & (g + W) < gO The inequality we need
to show is:

u(g + W) + δVEQ(g + W) ≥ u(g + W) + δVDEV(g + W)

VEQ(g + W) ≥ 1
1 − δ

[
W
n2

+ u(g + W)
]
.

As noted earlier, VEQ(g + W) > 1
1−δ

u(g + 2W) + δ

1−δ

W
n . This

means that we can prove the following inequality instead:

1
1 − δ

u(g + 2W) + δ

1 − δ

W
n

≥ 1
1 − δ

[
W
n2

+ u(g + W)
]

u(g + 2W) − u(g + W) ≥ W
n2

− δ
W
n

.

For δ ≥ 1/n, the RHS is negative, whereas the LHS is al-
ways positive, which gives the desired result.

Next, we need to prove that there is no profitable deviation
from the prescribed voting strategy in the punishment phase
(i.e., that the expected utility from voting “yes” to the pun-
ishment proposal is weakly higher than the expected utility
from voting “no”):

W
n − 1

+ u(g) + 1
1 − δ

[
W

n − 1
+ u(g)

]

≥ W
n − 1

+ u(g) + 1
1 − δ

[
W
n2

+ u(g)
]
.

It is clear that this inequality holds for any δ ∈ [0, 1].
Finally, we need to prove that there is no profitable devia-

tion from the prescribed proposal strategy in the punishment
phase. Any deviation will lead to rejection of the proposal
and, thus, implementation of the status quo. This means that
a proposer different from the deviator will stick to the pun-
ishment proposal as long as

W
n − 1

+ u(g) + 1
1 − δ

[
W

n − 1
+ u(g)

]

≥ W
n

+ u(g) + 1
1 − δ

[
W
n2

+ u(g)
]
,

which clearly holds for any δ ∈ [0, 1] and were done. �

B) q = n. In this case, following a deviation, the status
quo will be implemented every period. This is because—–in
the punishment phase—–the deviator never accepts a proposal
with an harsher punishment and his vote is needed to pass any
proposal. To support the optimal stock of the public good as
the outcome of a subgame perfect Nash equilibrium, employ
the following strategy configuration:

1. Whenever a member is recognized, he proposes a public
policy x, that entails a level of investment equal to I∗

O(g)
and an even share of W − I∗

O(g) as private transfer to
all committee members.

2. If a member j is recognized and deviates by proposing
y 
= x, all future proposers implement the status quo
policy.

We first show that the proposer has no profitable deviation
from the equilibrium strategy on the equilibrium path. The
proposer’s payoff if she follows the equilibrium strategy is⎧⎨⎩

u(g + W) + δVEQ(g + W) if g < gO

W − (y∗
O − g)

n
+ u(y∗

O) + δVEQ(y∗
O) if g > gO

where

VEQ(y∗
O) = W

n
+ u(y∗

O) + δVEQ(y∗
O)

=⇒ VEQ(y∗
O) = 1

1 − δ

[
W
n

+ u(y∗
O)

]
.

According to the proposed equilibrium voting strategies,
whenever the proposal is different from the equilibrium one,
a punishment will be carried out in every future period in
which the proposer is not the deviator and the status quo will
be implemented in all the other periods. Thus, all deviations
are payoff equivalent. The proposer’s payoff if she deviates
is

W
n

+ u(g) + δVDEV(g) ∀g

where

VDEV(g) = 1
1 − δ

[
W
n

+ u(g)
]
.

The expected payoff from a deviation is the payoff from
implementing the status quo for the current and all future pe-
riods. To check that the proposer’s strategy is an equilibrium
it is sufficient to check that the proposer has no profitable
deviation. As before, we have three cases, depending on what
region of the state space we are in:

Case 1: g ∈ [gO, y∗
O). In this case we need to show

W − (y∗
O − g)

n
+ u(y∗

O) + δVEQ(y∗
O)

≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

⇐⇒ 1
(y∗

O − g)

∫ y∗
O

g
u′(x)dx ≥ 1 − δ

n
.

The second inequality holds for any δ ∈ [0, 1]. To see this
note that by concavity of u(·)and the optimality condition in
the efficient solution we have u′(x) > 1−δ

n for any x < y∗
O.

Case 2: g ∈ [0, gO) & (g + W) > gO. In this case we need to
show:

u(g + W) + δVEQ(g + W) ≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

where

VEQ(g + W) = W − (y∗
O − g)

n
+ u(y∗

O) + δVEQ(y∗
O)

= W − (y∗
O − g)

n
+ u(y∗

O) + δ

1 − δ

(
W
n

+ u(y∗
O)

)
.
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Therefore the inequality we want to check becomes

u(g + W) + δVEQ(g + W) ≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

⇐⇒ u(g + W) + δu(y∗
O)

(1 − δ)
− u(g)

(1 − δ)
≥ W

n
+ δ

y∗
O

n
− δ

g
n

.

Using the fact that u(g + W) ≥ u(g) + u′(y∗
O)W = u(g) +

(1−δ)
n W we have a lower bound on the LHS and we can plug

it in to have

⇐⇒ u(g) + (1 − δ)
W
n

+ δu(y∗
O)

(1 − δ)
− u(g)

(1 − δ)

≥ W
n

+ δ
y∗

O

n
− δ

g
n

⇐⇒ [u(y∗
O) − u(g)] ≥ (1 − δ)

W + y∗
O − g

n
.

This inequality holds for δ ≥ δ̂ ∈ [0, 1]. To see this, notice
that the LHS is strictly positive, whereas the RHS converges
to zero as δ goes to 1.

Case 3: g ∈ [0, gO) & (g + W) < gO. In this case we want to
prove the following inequality:

u(g + W) + δVEQ(g + W) ≥ W
n

+ u(g) + δ

1 − δ

[
W
n

+ u(g)
]

where VEQ(g + W) = u(g + 2W) + δVEQ(g + 2W).
Note that, because u′(x) > 1−δ

n for any x < y∗
O., we

have u(g + x) > u(g) + (1−δ)
n x if (g + x) < y∗

O. Using this in-
equality we have a lower bound on the RHS, and it is sufficient
to prove that

u(g) + (1 − δ)
n

W + δVEQ(g + W)

≥ W
n

+ u(g) + δVDEV(g)

⇐⇒ VEQ(g + W) ≥ W
n

+ 1
1 − δ

[
W
n

+ u(g)
]
.

Note that V′
EQ(x) > 1/n for any x < y∗

O (as it is clear from
the equation for VEQ(y∗

O) and the condition for optimality in
the efficient solution), and thus, VEQ(g + x) > VEQ(g) + 1

n x.
This gives us a lower bound on VEQ(g + 2W) (> VEQ(g +
W) + W

n ) that we can use to get a lower bound onVEQ(g + W)

VEQ(g + W) = u(g + 2W) + δVEQ(g + 2W)

VEQ(g + W) >
1

1 − δ
u(g + 2W) + δ

1 − δ

W
n

>
1

1 − δ
u(g) + 2

W
n

+ δ

1 − δ

W
n

.

It is therefore sufficient to show that

1
1 − δ

u(g) + 2
W
n

+ δ

1 − δ

W
n

≥ W
n

+ 1
1 − δ

[
W
n

+ u(g)
]

⇐⇒
(

2 − δ

1 − δ

)
≥

(
2 − δ

1 − δ

)
.

This inequality holds for any δ ∈ (0, 1).

Next, we need to prove that there is no profitable deviation
from the prescribed voting strategy on the equilibrium path
(i.e., that the expected utility from voting “yes” to an equilib-
rium proposal is weakly higher than the expected utility from
voting “no” ). If q = n, voting “no” to an efficient proposal
leads to the implementation of the status quo in the current
period and all following periods. This means that the expected
utility from the equilibrium strategy and expected utility from
the most profitable deviation are the same as in the proposer
case, and the result showed earlier holds.

Next, we need to prove that there is no profitable deviation
from the prescribed voting strategy in the punishment phase
(i.e., that the expected utility from voting “yes” to the pun-
ishment proposal is weakly higher than the expected utility
from voting “no” ). In this case the punishment proposal is the
same as the status quo, and therefore the expected utilities
from voting “yes” and “no” are the same. Finally, we need to
prove that there is no profitable deviation from the prescribed
proposal strategy in the punishment phase. Any deviation will
lead to rejection of the proposal and, thus, implementation
of the status quo. This means that a proposer is indifferent
between the punishment proposal and any deviation and we
are done. �

C) q = 1. When q = 1 the proposer does not need the ap-
proval of any other member to implement a public policy. To
support the optimal stock of the public good as the outcome
of a subgame perfect Nash equilibrium, employ the following
strategy configuration:

1. Whenever a member is recognized, he proposes a public
policy x, that entails a level of investment equal to I∗

O(g)
and an even share of W − I∗

O(g) as private transfer to
all committee members.

2. If a member j is recognized and deviates by proposing
y 
= x, all future proposers implement the Markov per-
fect equilibrium policy (i.e., the policy that maximizes
the individual problem; that is, I∗

L(q = 1) and W − I∗
L to

the proposer as private transfer).

Denote y∗
L(q = 1) as y∗

D. The gains from deviation are
greater the closer g is to y∗

O . Therefore, we will check whether
the proposer has an incentive to deviate when g ∈ [gO, y∗

O],
or whether

W − (y∗
O − g) + u(y∗

O) + δVEQ(y∗
O)

≥ W − (y∗
D − g) + u(y∗

D) + δVDEV(y∗
D)

where VEQ(y∗
O) is defined as before and VDEV(y∗

D) = 1
1−δ

[ W
n +

u(y∗
D)]. Plugging in VEQ(y∗

O) and VDEV(y∗
D) we have

W − (y∗
O − g) + u(y∗

O) + δ

1 − δ

[
W
n

+ u(y∗
O)

]

≥ W − (y∗
D − g) + u(y∗

D) + δ

1 − δ

[
W
n

+ u(y∗
D)

]

u(y∗
O) − u(y∗

D) ≥ (1 − δ)(y∗
O − y∗

D)

There is δ̂ such that ∀δ > δ̂ and this inequality holds. To see
this, note that the LHS is greater than zero (because u(·) is
increasing and y∗

O > y∗
D) and that as δ approaches 1, the RHS

approaches zero. �
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